

(D1) Двойной пульсар / Binary Pulsar

Систематический поиск в течении последних десятилетий дал возможность астрономам найти множество миллисекундных пульсаров (период вращения < 10 мс). Большинство из них были найдены в двойных системах с круговыми орбитами.

Для пульсара, входящего в двойную систему, измеряемый период вращения вокруг собственной оси P и измеряемое лучевое ускорение (измеряется вдоль луча зрения) a периодически изменяются из-за орбитального движения. Для круговой орбиты изменения могут быть описаны математически с использованием орбитальной фазы φ ($0 \le \varphi \le 2\pi$):

$$P(\phi) = P_0 + P_t \cos\phi \qquad \text{where} P_t = \frac{2\pi P_0 r}{cP_B}$$
$$a(\phi) = -a_t \sin\phi \qquad \text{where} a_t = \frac{4\pi^2 r}{P_B^2}$$

где P_B – орбитальный период двойной системы, P_0 – истинный период вращения пульсара вокруг собственной оси и r – радиус орбиты двойной системы.

Ниже в таблице представлены результаты измерений P и a в разное гелиоцентрическое время (гелиоцентрические эпохи) T, выраженное в обрезанных Модифицированных Юлианских Днях (сутках) (tMJD), т.е. количество дней от дня MJD = 22400000.

	Т	Р	a
No.	(tMJD)	(µs)	$(m s^{-2})$
1	5740.654	7587.8889	-0.92±0.08
2	5740.703	7587.8334	-0.24 ± 0.08
3	5746.100	7588.4100	-1.68 ± 0.04
4	5746.675	7588.5810	$+1.67\pm0.06$
5	5981.811	7587.8836	$+0.72\pm0.06$
6	5983.932	7587.8552	-0.44 ± 0.08
7	6005.893	7589.1029	$+0.52\pm0.08$
8	6040.857	7589.1350	$+0.00\pm0.04$
9	6335.904	7589.1358	$+0.00\pm0.02$

Построив график $a(\varphi)$ в зависимости от $P(\varphi)$, мы можем получить параметрическую кривую. Из соотношений выше очевидно, что этой кривой в плоскости период-ускорение является эллипс.

В данной задаче необходимо определить истинный период вращения P_{θ} , орбитальный период P_B и радиус орбиты *r* используя анализ представленных здесь данных, в предположении круговой орбиты.

- (D1.1) Постройте график, используя данные таблицы, в координатах период-ускорение (подпишите график «D1.1»). Не забывайте про «усы» ошибок (error bars)!
- (D1.2) Начертите эллипс, который будет наилучшим образом описывать данные (на том же **2** графике «D1.1»)
- (D1.3) Используя график, найдите P_0 , P_t и a_t и величины их ошибок.
- (D1.4) Выразите P_B и r через величины P_0 , P_t и a_t .
- (D1.5) Рассчитайте приблизительные значения *P*_{*B*} и *r*, используя данные, полученные в (D1.3), и величины их ошибок.
- (D1.6) Рассчитайте орбитальные фазы φ , которые соответствуют эпохам следующих пяти наблюдений в таблице: строки 1, 4, 6, 8, 9.
- (D1.7) Уточните полученное значение орбитального периода PB, используя полученные результаты в (D1.6) следующим образом:

4

6

7

7

4

7

- (D1.7a) Сначала найдите начальную эпоху T_{θ} время, которое соответствует 2 ближайшей нулевой фазе перед первым наблюдением.
- (D1.7b) Предполагаемое (расчетное) время *T_{calc}* определённой орбитальной фазы <u>7</u> каждого наблюдения рассчитывается по формуле:

$$T_{\text{calc}} = T_0 + \left(n + \frac{\phi}{260^\circ}\right) P_{\text{B}},$$

где n – количество полных оборотов, прошедших с момента нулевой эпохи T_0 до расчетного времени T (или T_{calc}). Определите n и T_{calc} для каждого из пяти наблюдений из части (D1.6). Найдите разницы T_{0-C} между наблюдаемым T и расчетным T_{calc} моментами каждой из пяти фаз анализируемых наблюдений. Занесите полученные данные в таблицу в листе ответов.

- (D1.7c) Постройте зависимость T_{O-C} от n (подпишите график «D1.7»).
- (D1.7d) Получите уточнённые значения начальной эпохи $T_{\theta,r}$ и орбитального периода $P_{B,r}$.

(D2) Расстояние до Луны / Distance to the Moon

В таблице представлены геоцентрические эфемериды Луны на сентябрь 2015 года. Значения для каждой из дат поданы на момент 00:00UT по Всемирному времени.

Date		R.A.	(α)	Ι	Dec. (δ)	Angular Size (θ)	Phase (ϕ)	Elongation
	h	m	S	o	1		"		Of Moon
Sep 01	0	36	46.02	3	6	16.8	1991.2	0.927	148.6° W
Sep 02	1	33	51.34	7	32	26.1	1974.0	0.852	134.7° W
Sep 03	2	30	45.03	11	25	31.1	1950.7	0.759	121.1° W
Sep 04	3	27	28.48	14	32	4.3	1923.9	0.655	107.9° W
Sep 05	4	23	52.28	16	43	18.2	1896.3	0.546	95.2° W
Sep 06	5	19	37.25	17	55	4.4	1869.8	0.438	82.8° W
Sep 07	6	14	19.23	18	7	26.6	1845.5	0.336	70.7° W
Sep 08	7	7	35.58	17	23	55.6	1824.3	0.243	59.0° W
Sep 09	7	59	11.04	15	50	33.0	1806.5	0.163	47.5° W
Sep 10	8	49	0.93	13	34	55.6	1792.0	0.097	36.2° W
Sep 11	9	37	11.42	10	45	27.7	1780.6	0.047	25.1° W
Sep 12	10	23	57.77	7	30	47.7	1772.2	0.015	14.1° W
Sep 13	11	9	41.86	3	59	28.8	1766.5	0.001	3.3° W
Sep 14	11	54	49.80	0	19	50.2	1763.7	0.005	7.8° E
Sep 15	12	39	50.01	-3	20	3.7	1763.8	0.026	18.6° E
Sep 16	13	25	11.64	-6	52	18.8	1767.0	0.065	29.5° E
Sep 17	14	11	23.13	-10	9	4.4	1773.8	0.120	40.4° E
Sep 18	14	58	50.47	-13	2	24.7	1784.6	0.189	51.4° E
Sep 19	15	47	54.94	-15	24	14.6	1799.6	0.270	62.5° E
Sep 20	16	38	50.31	-17	6	22.8	1819.1	0.363	73.9° E
Sep 21	17	31	40.04	-18	0	52.3	1843.0	0.463	85.6° E
Sep 22	18	26	15.63	-18	0	41.7	1870.6	0.567	97.6° E
Sep 23	19	22	17.51	-17	0	50.6	1900.9	0.672	110.0° E
Sep 24	20	19	19.45	-14	59	38.0	1931.9	0.772	122.8° E
Sep 25	21	16	55.43	-11	59	59.6	1961.1	0.861	136.2° E
Sep 26	22	14	46.33	-8	10	18.3	1985.5	0.933	150.0° E
Sep 27	23	12	43.63	-3	44	28.7	2002.0	0.981	164.0° E
Sep 28	0	10	48.32	0	58	58.2	2008.3	1.000	178.3° E
Sep 29	1	9	5.89	5	38	54.3	2003.6	0.988	167.4° W
Sep 30	2	7	39.02	9	54	16.1	1988.4	0.947	153.2° W

Составное изображение¹ ниже представляет собой коллаж снимков Луны полученных в разное время во время лунного затмения в этом месяце. Для каждого кадра центр изображения совпадает с центральной линией тени.

В рамках данной задачи считать, что наблюдатель находится в центре Земли и под угловыми размерами стоит понимать диаметр.

Data Analysis Examination

3

4

4

8

3

4

- (D2.1) В сентябре 2015 года апогей лунной орбиты находится вблизи Новолуния / Первой Четверти / Полнолуния / Третей четверти. Поставьте «птичку» в соответствующей ячейке листа ответов. Доказывать свою точку зрения нет необходимости.
- (D2.2) В сентябре 2015 года восходящий узел лунной орбиты находится вблизи Новолуния / Первой Четверти / Полнолуния / Третей четверти.
 Поставьте «птичку» в соответствующей ячейке листа ответов. Доказывать свою точку зрения нет необходимости.
- (D2.3) Найдите эксцентриситет *е* лунной орбиты, используя только данные этой задачи.
- (D2.4) Найдите угловой размер тени θ_{umbra} выраженный в угловых размерах Луны θ_{Moon} . Процесс расчётов и нахождения необходимых величин изобразите на рисунке на обратно стороне листа ответов.
- (D2.5) Угловой диаметр Солнца в день затмения равнялся $\theta_{Sun} = 1915.0$ ". На рисунке ниже $S_1 R_1$ и $S_2 R_2$ – лучи идущие от диаметрально противоположных точек солнечного диска. Рисунок не в масштабе.

Рассчитайте угловой размер полутени $\theta_{penumbra}$ в угловых размерах Луны θ_{Moon} . Предположите, что наблюдатель находится в центре Земли!

- (D2.6) Пусть *θ_{Earth}* угловой размер Земли, видимый с Луны. Рассчитайте угловой размер Луны *θ_{Moon}*, который будет видно из центра Земли в день затмения в единицах углового размера Земли *θ_{Earth}*.
- (D2.7) Расчитайте радиус Луны *R*_{*Moon*} в километрах.
- (D2.8) Рассчитайте наименьшее $r_{perigee}$ и наибольшее r_{apogee} расстояние до Луны.
- (D2.9) Используя имеющиеся данные для 10 сентября определите расстояние *d*_{Sun} от Земли до солнца.

(D3) Сверхновые Ia / Туре IA Supernovae

Сверхновые Ia являются очень важными объектами для измерения больших межгалактических расстояний. Вспышка и последующее затухание их взрывов повторяют характерные кривые блеска, позволяющие отождествить их как сверхновые типа Ia.

Кривые блеска всех сверхновых типа Іа могут быть приведены к фактически одной модельной кривой блеска, после соответствующего масштабирования. Для того, чтобы сделать это, сперва необходимо привести кривую блеска к системе отсчёта материнской галактики, приняв во внимание космологическое увеличение всех наблюдаемых нами временных интервалов Δt_{obs} на множитель (1+z).

В неподвижной системе отсчёта на кривой блеска сверхновой после момента максимума блеска уменьшение звёздной величин 2^m происходит за промежуток времени Δt_{θ} . Если в дальнейшем отмасштабировать временные интервалы с помощью множителя *s* (т.е. $\Delta t_s = s\Delta t$), таким образом, чтобы величина Δt_{θ} была одинаковой для всех сверхновых, то мы получим одинаковые профили для кривых блеска всех сверхновых. Также величина *s* линейно зависит от абсолютной звёздной величины M_{peak} сверхновой в максимуме светимости. Поэтому можно записать соотношение:

$$s = a + bM_{peak}$$

где a и b – константы. Зная множитель s можно определить абсолютную звёздную величину сверхновой, находящейся на неизвестном расстоянии, используя линейное уравнение, написанное выше.

В таблице собраны данные о трёх сверхновых. Для двух из них известны модули расстояния μ . Также там представлены скорости удаления cz и видимая звёздная величина m_{obs} в разное время. Время наблюдения Δt_{obs} =t- t_{peak} – количество дней, прошедших с момента максимума блеска/светимости сверхновой. Видимые звёздные величины даны с учётом атмосферного и межзвёздного поглощения света.

Name	SN2006TD	SN2006IS	SN2005LZ
μ (mag)	34.27	35.64	
$cz (km s^{-1})$	4515	9426	12060
Δt_{obs} (d)	mobs (mag)	mobs (mag)	mobs (mag)
-15.00	19.41	18.35	20.18
-10.00	17.48	17.26	18.79
-5.00	16.12	16.42	17.85
0.00	15.74	16.17	17.58
5.00	16.06	16.41	17.72
10.00	16.72	16.82	18.24
15.00	17.53	17.37	18.98
20.00	18.08	17.91	19.62
25.00	18.43	18.39	20.16
30.00	18.64	18.73	20.48

- (D3.1) Посчитайте Δt_{gal} интервалы времени в системе отсчёта материнской галактики для всех трёх галактик и внесите эти данные в таблицу на обратной стороне листа ответов. На бумаге для построения графиков, постройте точки и проведите графики кривых блеска для всех трёх галактик. (обозначьте график «D3.1»)
- (D3.2) Примите, что множитель s_2 для сверхновой SN2006IS равен 1.00. Посчитайте **5** множители s_1 и s_3 для двух сверхновых SN2006TD и SN2005LZ соответственно, рассчитывая значения Δt_0 для них.
- (D3.3) Посчитайте масштаб временных интервалов Δt_s для всех трёх сверхновых. Занесите значения Δt_s в ту же таблицу в листе ответов. На другом листе бумаги для построения графиков постройте точки и проведите графики кривых блеска для всех трёх галактик,

чтобы убедиться, что теперь они имеют одинаковый профиль. (обозначьте график «D3.3»).

- (D3.4) Посчитайте абсолютные звёздные величины в момент максимума блеска $M_{peak,1}$ для SN2006TD и $M_{peak,2}$ для SN2006IS. Используя эти данные? рассчитайте константы a и b.
- (D3.5) Посчитайте абсолютную звёздную величину в момент максимума блеска *M*_{peak,3} и **4** модуль расстояния *µ*₃ для SN2005LZ.
- (D3.6) Используя значение модуля расстояния μ_3 , определите значение постоянной Хаббла H_0 . Далее, определите характерный возраст Вселенной T_H .